Interaxonal Eph-ephrin signaling may mediate sorting of olfactory sensory axons in Manduca sexta.
نویسندگان
چکیده
We have investigated possible roles of the Eph family receptor tyrosine kinases and their ligand ephrins in the developing primary olfactory nerve pathway in the moth Manduca sexta. The Manduca homologs of the Eph receptor (MsEph) and ephrin ligand (MsEphrin) are most closely related to Drosophila Eph and ephrin, respectively. In situ labeling with Fc-fusion probes, in which IgG Fc was linked to the extracellular domain of MsEph (Eph-Fc) or MsEphrin (ephrin-Fc), reveals that both Eph receptors and ephrins are expressed on axons of olfactory receptor cells (ORCs) during their ingrowth to the primary center, the antennal lobe (AL). Interestingly, Eph receptors and ephrins are differentially distributed among identifiable glomeruli such that glomeruli with high receptor staining show little or no ligand staining, and vice versa, suggesting a complementary Eph-ephrin expression by subsets of ORC axons innervating a particular set of glomeruli. In contrast, neither Eph receptors nor ephrins are detectable in intrinsic components of the AL. In vitro, ephrin-Fc and Eph-Fc, when present homogeneously in the substratum, inhibit neurite outgrowth from olfactory epithelial explants. Moreover, in patterned substratum, neurites growing on the standard substratum turn or stop after encountering the test substratum containing ephrin-Fc. These in vitro observations indicate that MsEphrin can act as an inhibitor/repulsive cue for ORC axons. Based on results from in situ and in vitro experiments, we hypothesize that Eph receptors and ephrins mediate axon sorting and fasciculation through repulsive axon-axon interactions.
منابع مشابه
Development of a glia-rich axon-sorting zone in the olfactory pathway of the moth Manduca sexta.
Olfactory receptor cells (ORCs) of a particular odor tuning are dispersed in the olfactory epithelium, but their axons converge on distinct glomeruli in primary olfactory centers. As a consequence, axon associations must change to bring axons of ORCs with the same odor specificity together. Studies in Manduca sexta have indicated that just before they enter the antennal lobe (AL), ORC axons und...
متن کاملThe nitric oxide-cGMP pathway may mediate communication between sensory afferents and projection neurons in the antennal lobe of Manduca sexta.
The nitric oxide (NO)-cGMP signaling system is thought to play important roles in the function of the olfactory system in both vertebrates and invertebrates. One way of studying the role of NO in the nervous system is to study the distribution and properties of NO synthase (NOS), as well as the soluble guanylyl cyclases (sGCs), which are the best characterized targets of NO. We study NOS and sG...
متن کاملFunctional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmoth Manduca sexta
Citation: Klinner CF, König C, Missbach C, Werckenthin A, Daly KC, Bisch-Knaden S, Stengl M, Hansson BS and Große-Wilde E (2016) Functional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmoth Manduca sexta. Front. Ecol. Evol. 4:130. doi: 10.3389/fevo.2016.00130 Functional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmot...
متن کاملA Flight Sensory-Motor to Olfactory Processing Circuit in the Moth Manduca sexta
Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any sp...
متن کاملActivation of Glial FGFRs Is Essential in Glial Migration, Proliferation, and Survival and in Glia-Neuron Signaling during Olfactory System Development
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 37 شماره
صفحات -
تاریخ انتشار 2003